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We formulate a Langevin-Gross-Pitaevski equation for spatially homogeneous systems together with the
semiclassical Boltzmann equations for the excited states of polaritons in a microcavity. The gain of the
coherent amplitude is due to the polariton-polariton scattering from the excited states to the ground state and
has been obtained by an adiabatic elimination the corresponding three-point polarization. The Langevin-Gross-
Pitaevski equation contains in addition to the gain the cavity losses as well as the fluctuations from the cavity
losses and from the eliminated polarization. In analogy to the semiconductor laser theory the homogeneously
broadened linewidth of the condensate amplitude can be evaluated analytically above threshold using the
dissipation-fluctuation theorem. A linewidth enhancement is found because of the changes in the dispersive
part of the gain function with the number of excited states and of the blueshift of the ground state. The latter
mechanism causes well above threshold the homogeneously broadened linewidth to increase again after a
remarkably narrow linewidth is reached. This decoherence mechanisms is inherent to all nonequilibrium
condensates due to the Gross-Pitaevski nonlinearity and the fluctuations of the condensate population
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I. INTRODUCTION

The exciton polaritons in microcavities have been shown
in many experiments to condense above threshold in the
ground state of the lower polariton branch. At this point
phase coherence of the condensate evolves which can be
seen by a Schawlow-Townes decrease in the emission line-
width. But only at slightly higher values of the condensate
populations the linewidth is observed to go through a sharp
minimum, above which a decoherence sets in manifested by
a sharp linewidth increase.1,2 As seen in a recent
investigation3 these earlier measurements have been domi-
nated by pump noise, using a noise-free diode laser the line-
width decrease much further down to 10 �eV which corre-
sponds to a coherence time of about 150 ps. Already
Yamamoto et al.4 in the framework of a Langevin theory and
Porras and Tejedor5 using a reduced density-matrix formula-
tion, recognized that this linewidth increase is due to the
blueshift due caused by the polariton-polariton �p-p� interac-
tion in the ground state. However, analytical results for the
linewidth have only be given in limiting cases.

In order to study the inherent mechanism for this rerising
of the linewidth and the connected decoherence mechanism
we consider the homogeneous limit. A linewidth theory for
homogeneous broadening needs a description of the dynam-
ics of the condensate amplitude. The theory of laser and of
atom lasers provides us with the tools for such studies. We
will us a quantum Langevin equation for the coherent con-
densate amplitude which will allow us to derive an analytical
linewidth formula in close analogy with the well-established
linewidth enhancement theory of semiconductor lasers.6,7

The dominant gain mechanism is the p-p scattering which
scatters one excited particle from state q� to the ground state
0 while another one is scattered into a state with higher en-
ergy from k� −q� to k�. This scattering process couples a three-

point variable of the excited states, called the polarization, to
the amplitude equation. An adiabatic elimination of the po-
larization provides the gain, the frequency shift, and fluctua-
tions due to these scattering processes. In the Markov ap-
proximation the second moments of the fluctuation operators
are determined by the dissipation-fluctuation theory. Because
in the microcavity �mc� system the excited states are band
states as, e.g., in a semiconductor laser, we use the analogy
with the theory of this laser type6 in the following.

II. DERIVATION OF THE LANGEVIN-GROSS-PITAEVSKI
EQUATION

We start our treatment by selecting the interaction which
provides the gain of the condensate. The corresponding in-
teraction Hamiltonian is

Hint = �
k�,q�

�gq�bk�−q�
† b0

†bk�bq� + H.c.� . �1�

Here gq is the p-p interaction, originating from the Coulomb
exchange energy between two quantum well excitons, mul-
tiplied by the exciton Hopfield coefficients of the four in-
volved polaritons. Both wave numbers k and q are unequal
zero. The Heisenberg equation for the ground-state operator
b0�t� together with the losses and connected fluctuations
yields

db0

dt
= − i�0�n̂0�b0 − �0b0 − i�

k�,q�

gqbk�
†bk�−q�bq� + F0�t� , �2�

where �0 is the cavity-loss rate and F0�t� the connected
Langevin fluctuation operator. The frequency of the ground
state is dependent on the condensate population operator n̂0
=b0

†b0
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�0�n̂0� = �0 + g0n̂0. �3�

The last term in Eq. �3� is due to the self-interaction of the
polaritons in the ground state and presents—if averaged—the
well-known blueshift. The operator of the polarization

Pk,q = bk�
†bk�−q�bq� �4�

couples to the coherent amplitude, just as the optical polar-
ization couples to the laser mode. In order to get a closed
system of equations for b0 and the densities of the excited
states we eliminate the polarization adiabatically. For this
purpose we evaluate its equation of motion

dPk�,q�

dt
=

i

�
�Hint,Pk�,q�� . �5�

The commutator yields the following operator products:

�
k��,q��

gq��bk��−q��
† bk��bq��

† bk�
†bk�−q�bq� − bk�

†bk�−q�bq�bk��−q��
† bk��bq���b0.

�6�

A straightforward factorization in terms of excited-state den-
sities yields together with the damping �k�,q� and the fluctua-
tions Fk�,q� of the polarization

dPk�,q�

dt
= �i��k� − �k�−q� − �q�� − �k�,q��Pk�,q� + igq

��nq�nk�−q��1 + nk�� − nk��1 + nq���1 + nk�−q���b0 + Fk�,q� .

�7�

Taking the rapid oscillations out of the condensate amplitude

b0�t� = B0�t�e−i�0t �8�

one gets the adiabatic solution

Pk�,q��t� = gq

nq�nk�−q��1 + nk�� − nk��1 + nq���1 + nk�−q��

��k� − �k�−q� − �q� + �0� + i�k�,q�

b0

+ �
−�

t

dt�Fk�,q��t��e
i��k�−�k�−q�+�q�+i�k�,q���t−t��. �9�

In detail this result can be justified by pulling the slowly
varying occupation factors of the excited states out of the
time integral on the upper limit t and by performing the time
integration over the rapidly varying frequencies. In this sense
the numbers of the excited states can still be considered to
vary adiabatically with time. Inserting this result back into
the Langevin-Gross-Pitaevski equation we find

db0

dt
= − i��0�n̂0� + G��b0 + �G� − �0�b0 + F0�t�

− i�
k�,q�

gq�
−�

t

dt�Fk�,q��t��e
i��k�−�k�−q�−�q�+i�k�,q���t−t��,

�10�

where in the limit of vanishing damping the gain of the con-
densate G��Nx� is

G� = �
k�,q�

gq
2�nq�nk�−q��1 + nk�� − nk��1 + nq���1 + nk�−q���

� 	
��k� − �k�−q� − �q� + �0� �11�

and the imaginary part is

G� = P�
k�,q�

gq
2
nq�nk�−q��1 + nk�� − nk��1 + nq���1 + nk�−q��

�k� − �k�−q� − �q� + �0
, �12�

where P denotes the principal value. The two expressions of
the complex gain have been obtained by applying the Dirac
identity. G� describes the energy shift due to the interaction
of the condensate with the excited states. G� and G� describe
real and imaginary parts of a complex gain function. The Eq.
�10� can be seen as the nonequilibrium extension of the
Gross-Pitaevski equation. Wouters and Carusotto8 used such
a phenomenologically derived equation �without fluctua-
tions� for spatially inhomogeneous systems together with one
kinetic equation for the number of excited states in order to
calculate the excitation spectrum of a nonequilibrium con-
densate. Recently, a stochastic extension of these equations
in terms of a functional Fokker-Planck equation has been
given by Wouters and Savona.9 A similar formulation mainly
concerned with the polarization coherence is due to Read et
al.10 As is well known already from laser theory the Fokker-
Planck and the Langevin noise theories are equivalent. On
the other hand each formulation allows in the treatment of
concrete problems specific approximations not easily acces-
sible in the alternative formulation.

The first moments of the fluctuation operators vanish, the
second moments are in the Markov limit delta correlated.
The dissipation-fluctuation theorem for the order parameter
fluctuations are11

�F0
†�t�F0�t�� + F0�t�F0

†�t��� = 
�t − t��2�0�2n0,th + 1� .

�13�

n0,th is the thermal number of ground-state polaritons, which
can be neglected. �FF� and �F†F†� are both zero. For the
Langevin equation

dPk�,q�

dt
= Ak�,q� + Fk�,q��t� �14�

the polarization fluctuation moments can be calculated from
the fluctuation-dissipation theorem12,13

�Fk�,q��t�Fk��,q��
† �t��� = 
�t − t��
k�,k��
q� ,q���Fk�,q�Fk�,q�

† � , �15�

where we need, in particular,

�Fk�,q�Fk�,q�
† � + �Fk�,q�

† Fk�,q�� = 2�k�,q��nq�nk�−q��1 + nk�� + nk�

��1 + nq���1 + nk�−q��� . �16�

The polarization fluctuations are determined by the sum of
the two population factors whose difference determines the
gain.
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III. LINEARIZATION OF PHASE AND AMPLITUDE
EQUATIONS

With this formalism we can now calculate the linewidth,
given by the second moment of the phase fluctuation and the
density fluctuations above and below the condensate thresh-
old. The average over an exponential of the fluctuating phase
��t� yields

�ei���t�−��0��� 	 e−�t �17�

with the linewidth �= 1
2

����t�−��0��2�
t , which has the form a

phase-diffusion coefficient. For simplicity we consider sta-
tionary situations of the Langevin-Gross-Pitaevsky equation
with fluctuations around a stationary mean value. Above
threshold we use the semiclassical decomposition of the fluc-
tuating condensate amplitude

b0�t� = �r0 + 
�t��e�i�0+i��t��, �18�

where the fluctuating part of the amplitude can be assumed
to be much smaller than the coherent part, i.e., �
�t�2��r0

2

=N0.
The complex gain function G�Nx� depends on the total

number of particles Nx in the excited states, which in local
equilibrium can be related by its kinetics equation to N0, i.e.,
G�Nx�N0�� , as will be discussed below. With this approach
we assume that the kinetics of the excited states follows the
order parameter instantaneously. This bypass of the excited
states kinetics allows to get simple analytical expressions for
the linewidth.

With this ansatz we get from the Langevin-Gross-
Pitaevski equation first two identities from the mean part

�0 = �0 + g0N0 + G0��Nx� and G0��Nx� = �0. �19�

The frequency shifts are due to the particle-particle interac-
tion and the dispersive effect of the scattering from the ex-
citation continuum into the ground state. The second relation
shows that above threshold the mean saturated gain equals
the losses for the condensate.

Using the above-mentioned expansion the equations for
the fluctuating phase and amplitude are

r0�̇ = − 
g0 +
�G�

�N0
�2N0
 + Im�F̃0�t�ei�0t� , �20�


̇ = +
�G�

�N0
2N0
 + Re�F̃0�t�ei�0t� , �21�

where F̃0 is given by

F̃0�t� = F0�t� − i�
k,q

gq�
0

t

dt1Fk,q�t1�ei��k−�k−q−�q+i�k,q��t−t1�.

�22�

Here we generalized the perturbational result by replacing
the bare frequencies by the renormalized ones �k→�k
which are shifted in the same way as the ground state in
order to avoid an artificial gap. The same replacements are
made in the gain formula �11� and in the corresponding shift
G�. In the above given Eqs. �20� and �21� �G

�N0
has to be

expressed by changes in G with Nx. Note that with fluctua-
tions the gain is not constant, as the mean gain result in Eq.
�19� suggests, but approaches the loss rate asymptotically, so
that the derivative of the complex gain with either N0 or Nx
are finite.

The mean summed stationary rate equation for the excited
states provides the functional relation for the changes in Nx
with N0. In particular the derivative of the complex gain
function G with respect to N0 which appears in the linearized
equations is

�G

�N0
=

�G

�Nx

dNx

dN0
. �23�

The mean stationary rate equation for total number of excited
particles is

Ṅx = P − 2�̄Nx − 2G�N0 = 0, �24�

where P is the total noise-free pump rate and �̄ is the mean
loss rate, defined by

�̄ =

�
k

�knk

�
k

nk

=

�
k

uk
2�0nk

Nx
. �25�

Here uk is the photon Hopfield coefficient of the mc polari-
tons. Note that the scattering within the excited states drops
out due to detailed balance, once a local equilibrium is es-
tablished. Both in experiment14 and in the Boltzmann kinetic
studies15 it has been shown that even with picosecond pulse
excitation such a local equilibrium is reached about 40 ps
after the pulse. Under these conditions a reduction in the
Boltzmann equation for the excited states to the simple-rate
equation for all excited states is possible. From Eq. �24� we
find

− �̄dNx −
�G�

�Nx
N0dNx − G�dN0 = 0, �26�

which yields

dNx

dN0
= −

G�

�̄

1

1 +
N0

Ns

= = −
�0

�̄

1

1 +
N0

Ns

, �27�

where we inserted the mean equation result in Eq. �19� for
the saturated gain. The gain saturation number is given by

Ns
−1 =

1

�̄

�G�

�Nx
. �28�

This gain saturation should not be confused with the often
quoted saturation density which indicates the breakdown of
the boson model for quantum well excitons. Finally the de-
rivative of the complex gain with respect to N0 is
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�G

�N0
= −

�G

�Nx

�0

�̄

1

1 +
N0

Ns

. �29�

For the real part of the gain the result can be simplified
further using the definition of Ns

�G�

�N0
= − �0

1

Ns

1 +
N0

Ns

. �30�

These results have to be inserted in the linearized Eqs. �20�
and �21� for the fluctuating phase and amplitude. We empha-
size again, the advantage of this approach to shortcut the
fluctuations of the excited-states population by expressing
the changes in the gain with the number of excited particles
by the changes in the gain with N0 is that the linearized noise
equations are simpler and allow analytical results for the
linewidth and the second-order correlation function. On the
other hand, the treatment of both condensate fluctuations and
independent fluctuations of the excited states is certainly the
more complete approach.

The integral of the amplitude equation is


�t� = �
0

t

dt1 Re�F̃0�t1�ei�0t1�e−2�0�N0/Ns�/1+�N0/Ns�t1. �31�

Inserting this result into the phase equation we find

r0���t� − ��0�� = − �
0

t

dt2�2N0
g0 +
�G�

�N0
��

0

t2

dt1

� �Re F̃0�t1�ei�0t1�e�G�/�N02N0t1

+ Im�F̃0�t2�ei�0t2�
 �32�

or

����t� − ��0��2�

=
1

N0
�

0

t

dt2�
0

t

dt4

��
��
0

t2

dt12N0
g0 +
�G�

�N0
�

�Re�F�̃ 0�t1�ei�0t1�e�G�/�N02N0t1 + Im�F̃0�t2�ei�0t2�

� ��

0

t4

dt32N0
g0 +
�G�

�N0
�Re�F̃0�t3�

�ei�0t3�e�G�/�N02N0t3 + Im�F̃0�t4�ei�0t4�
�� . �33�

In all these expressions the derivative of the complex gain
function with respect to N0 has to be expressed by Eq. �29� in
terms of derivatives with respect to Nx.

IV. LINEWIDTH AND SECOND-ORDER CORRELATION
FUNCTION

Considering first only the order parameter fluctuations, we
use


 Re

i Im
�F0ei�0t =

1

2
�F0ei�0t � F0

†e−i�0t� �34�

and the Markov dissipation-fluctuation theorem �Eq. �13��.
For �0t�1 and for

�0t

N0

Ns

1 +
N0

Ns

� 1 �35�

one finds the linewidth contribution

� =
�0

2N0
�2nth + 1��1 + �g0
1 +

N0

Ns
� �̄

�0
−

�G�

�Nx

�G�

�Nx

�
2

� .

�36�

Here nth= 1
e��0�−1

is the negligibly small thermal polariton
number in the ground state, the 1 represents the contribution
of the vacuum fluctuations. If we take additionally the polar-

ization fluctuation in F̃0 into account the final linewidth re-
sult becomes

� =
�0

N0
�nth + nsp��1 + �g0
1 +

N0

Ns
� �̄

�0
−

�G�

�Nx

�G�

�Nx

�
2

� .

�37�

The appearance of the number of spontaneously emitted
bosons into the ground state can be understood as follows.
We express the gain function �see Eq. �11�� as G�=Rx→0
−R0→x, i.e., as the difference between the transition rates
from the excited states to the ground state and that of the
reverse processes. We find from the polarization fluctuations
with Eq. �16� plus the vacuum fluctuations the contribution
�0�2nth+1�+Rx→0+R0→x. Adding and subtracting the first
rate, we find 2�0nth+2Rx→0−G�+�0=2�0�nth+nsp�, where
we made use of Eq. �19�. The number of spontaneously emit-
ted ground-state polaritons is determined by the simple-rate
equation

2�0nsp = 2Rx→0. �38�

For practical purpose nsp�nth.
Without the square enhancement term, the linewidth Eq.

�37� has the form of a Schawlow-Townes linewidth which
decreases as 1 /N0 above threshold. The square term has the
form of a linewidth enhancement factor and reduces for g0
=0 to the well-known enhancement factor
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�2 = � �Gx�/�Nx

�Gx�/�Nx
�2

from the semiconductor laser theory.6,7 Because the deriva-
tives of real and imaginary gains enter in the linewidth with
the saturation denominator in Eq. �29�, the term �1+N0 /Ns�
finally becomes in Eq. �37� a prefactor of the self-interaction
matrix element g0. Note the opposite signs of this blueshift
part and the part due to the changes in the imaginary gain
function G��Nx� with the number of excited polaritons Nx
�because �G� /�Nx�0�. Directly above threshold the latter
part dominates, so that a Schawlow-Townes law 1

N0
can be

observed with an �2-enhanced linewidth due to the interac-
tion with the excited states. Eventually the square term in N0
dominates over the 1 /N0 prefactor. The linewidth calculated
with Eq. �37� using the solutions of the Boltzmann kinetics is
shown in Fig. 1 for GaAs-based mc’s. It is seen that a re-
markably small linewidth is reached before at higher pump
values the decoherence mechanism dominates. For this cal-
culation the complex gain function and the derivatives
�G� /�Nx and �G� /�Nx had to be evaluated using the Boltz-
mann kinetics for the excited-states population nk. The three-
fold integrals over the involved wave numbers k, q and the
angle between the corresponding wave vectors are not easily
evaluated with the required accuracy and depend, e.g., sen-
sitively on the assumed finite-polarization damping �k,q �see
Eq. �9�� which was assumed to be 0.2 meV for the results
shown in Fig. 2. On the other hand the position and depth of
the minimum are very susceptible to these values, thus an
accurate prediction of the value of the minimal linewidth and
the corresponding pump power is difficult. The calculated
derivatives of the gain with respect to the number of excited
particles are shown in Fig. 2. The resulting gain saturation
number Ns which according to Eq. �28� is proportional to the
inverse of �G� /�Nx varies in the shown pump power range
between 2�103 and 4�103.

As mentioned in the introduction, under quasistationary
conditions a Gaussian decay with very long coherence times
of up to 150 ps has been observed in CdTe-based mc’s using
noise-free pumping.3 This decay time corresponds to a line-
width of about 10 �eV, while Porras and Tejedor5 estimated
a minimal linewidth of 1 �eV. In our simplified model in

which the noise of the excited-states population is bypassed,
we get for GaAs mc’s an exponential decay with a minimal
linewidth of about 60 �eV at a condensate population N0
	100. This minimum linewidth condensate number is of the
same order as that observed in pump-noise-free
experiments.3

Instead of a detailed kinetic analysis, the analytical line-
width formula �37� can also be used to characterize with a
few fitting parameters such as nsp, Ns, and real and imaginary
parts of �G /�Nx a measured linewidth around its minimal
value. It is important to state that the nonlinear Gross-
Pitaevski self-interaction term together with the density fluc-
tuations provides for all nonequilibrium condensates a deco-
herence mechanism which increases the phase correlations
and thus the linewidth.

Similarly the second-order correlation function g2�� , t�
can be evaluated from the amplitude fluctuations

g2��,t� =
�b0

†�t�b†�t + ��0b�t + ��0b�t�0�
�b0

†�t�b�t�0��b†�t + ��0b�t + ��0�

= 1 +
4

N0
�
�t + ��
�t��

= 1 +
4

N0
�
2�t��e−2�0�N0/Ns�/1+�N0/Ns��. �39�

The second variance of the density fluctuations is

�
2�t�� =
1

4

1 +

Ns

N0
��nth + nsp� . �40�

Note that the variance saturates at 1
4 �nth+nsp� for N0�Ns,

while g2��=0� still approaches the coherent limit of 1 like
N0

−1 for very large values of N0. This asymptotic behavior of
the second-order correlation function is still a not completely
settled problem �see Refs. 16 and 17�. The influence of the
spin degree of freedom on first- and second-order coherences
has been analyzed in Ref. 18.

FIG. 1. Calculated linewidth for GaAs-based mc’s above thresh-
old versus condensate population N0. Inset: condensate population
N0 versus normalized pump power.

FIG. 2. Calculated derivatives of the complex gain as a function
of the excited-states population Nx. On the top of the figure the
corresponding values of the normalized pump power are given.
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In conclusion, an analytical formula for the homogeneous
linewidth of a microcavity polariton condensate has been
derived from a Langevin-Gross-Pitaevsky equation. The
usual Schawlow-Townes linewidth is enhanced by dispersive
gain variations known from semiconductor lasers and by the
combined effect of the density-dependent blueshift, the gain
saturation and the density fluctuations. The nonlinear term of
the Gross-Pitaevski equation which is crucial for the coher-
ent properties of interacting equilibrium condensates, rather
becomes at higher pump levels a source of decoherence for
nonequilibrium condensates because of the fluctuations in

the ground-state population. Together with the solutions of
the Boltzmann equation for the excited states and the ground
state, the derived formula allows a complete evaluation of
the linewidth.

ACKNOWLEDGMENT

Two of us �H.T.C. and D.B.T.T.� gratefully acknowledge
the financial support of the National Foundation for Science
and Technology Development �NAFOSTED�.

1 J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeanbrun,
J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre,
J. L. Staehli, V. Savona, P. B. Littlewood, B. Devaud, and Le Si
Dang, Nature �London� 443, 409 �2006�.

2 R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Sci-
ence 316, 1007 �2007�.

3 A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, R.
Bouchekioua, D. Sanvitto, S. A. Rizeiqi, R. Bradley, M. S.
Skolnick, P. R. Eastham, R. Andre, and L. S. Dang, Phys. Rev.
Lett. 101, 067404 �2008�.

4 Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity
Electrodynamics Dynamics, Springer Tracts in Modern Physics
Vol. 169 �Springer, New York, 2000�.

5 D. Porras and C. Tejedor, Phys. Rev. B 67, 161310�R� �2003�.
6 H. Haug and H. Haken, Z. Phys. 204, 262 �1967�.
7 K. Vahala and A. Yariv, IEEE J. Quantum Electron. 19, 1102

�1983�.
8 M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402

�2007�.

9 M. Wouters and V. Savona, Phys. Rev. B 79, 165302 �2009�.
10 D. Read, T. C. H. Liew, Y. G. Rubo, and A. V. Kavokin, Phys.

Rev. B 80, 195309 �2009�.
11 J. R. Senitzky, Phys. Rev. 119, 1807 �1960�; 123, 1525 �1961�.
12 M. Lax, Phys. Rev. 145, 110 �1966�.
13 H. Risken, C. Schmid, and W. Weidlich, Z. Phys. 193, 37

�1966�.
14 H. Deng, D. Press, S. Gotzinger, G. S. Solomon, R. Hey, K. H.

Ploog, and Y. Yamamoto, Phys. Rev. Lett. 97, 146402 �2006�.
15 T. D. Doan, H. T. Cao, D. B. Tran Thoai, and H. Haug, Solid

State Commun. 145, 48 �2008�.
16 P. Schwendimann and A. Quattropani, Phys. Rev. B 77, 085317

�2008�.
17 N. D. Vy, H. T. Cao, D. B. Tran Thoai, and H. Haug, Phys. Rev.

B 80, 195306 �2009�.
18 F. P. Laussy, I. A. Shelykh, G. Malpuech, and A. Kavokin, Phys.

Rev. B 73, 035315 �2006�.

HAUG, CAO, AND THOAI PHYSICAL REVIEW B 81, 245309 �2010�

245309-6

http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1103/PhysRevLett.101.067404
http://dx.doi.org/10.1103/PhysRevLett.101.067404
http://dx.doi.org/10.1103/PhysRevB.67.161310
http://dx.doi.org/10.1007/BF01326200
http://dx.doi.org/10.1109/JQE.1983.1071984
http://dx.doi.org/10.1109/JQE.1983.1071984
http://dx.doi.org/10.1103/PhysRevLett.99.140402
http://dx.doi.org/10.1103/PhysRevLett.99.140402
http://dx.doi.org/10.1103/PhysRevB.79.165302
http://dx.doi.org/10.1103/PhysRevB.80.195309
http://dx.doi.org/10.1103/PhysRevB.80.195309
http://dx.doi.org/10.1103/PhysRev.119.1807
http://dx.doi.org/10.1103/PhysRev.145.110
http://dx.doi.org/10.1007/BF01326458
http://dx.doi.org/10.1007/BF01326458
http://dx.doi.org/10.1103/PhysRevLett.97.146402
http://dx.doi.org/10.1016/j.ssc.2007.09.034
http://dx.doi.org/10.1016/j.ssc.2007.09.034
http://dx.doi.org/10.1103/PhysRevB.77.085317
http://dx.doi.org/10.1103/PhysRevB.77.085317
http://dx.doi.org/10.1103/PhysRevB.80.195306
http://dx.doi.org/10.1103/PhysRevB.80.195306
http://dx.doi.org/10.1103/PhysRevB.73.035315
http://dx.doi.org/10.1103/PhysRevB.73.035315

